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SUMMARY

Vector systematics research is being transformed by the recent development of theoretical, experimental and analytical
methods, as well as conceptual insights into speciation and reconstruction of evolutionary history. We review this progress
using examples from the mosquito genusAnopheles. The conclusion is that recent progress, particularly in the development
of better tools for understanding evolutionary history, makes systematics much more informative for vector control
purposes, and has increasing potential to inform and improve targeted vector control programmes.
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INTRODUCTION

Disease control directed at vectors such as ticks, flies
and mosquitoes has proved to be a cost-efficient and
successful approach (Michalakis and Renaud, 2009),
but effective vector control may sometimes suffer
setbacks from a lack of reliable identification of
vectors (Monteiro et al. 2001; Marquardt, 2004).
Correct identification of vectors directly relies on
systematics research, such as research on species
delimitation and reconstructions of evolutionary
history (Manguin et al. 2008). From a control
perspective, it may appear that the systematics of
vectors is well understood, but for a large number
of important vector species there is actually a lack of
basic systematics knowledge. Among systematists, it
is for instance known that several of the lower
taxonomic levels of the genus Anopheles, such as
Series, Groups, Subgroups and complexes, may not
always represent the actual evolutionary history of
the organisms (Foley et al. 1998; Krzywinski et al.
2001; Sallum et al. 2002; Harbach, 2004, 2007).
Furthermore, for a large number of genetic species-
level studies, one morphological taxon has turned out
to be a species complex, where the species may differ
in traits that are of importance for vector control,
such as vectorial capacity, behaviour or ecology
(Collins and Paskewitz, 1996; Manguin et al. 2008).
Therefore, we suggest that vector control pro-
grammes could benefit greatly from an improved

knowledge of vector evolution and systematics, and
from a better understanding of the uncertainties
associated with systematics and methods of species
delimitation. We outline some of the recent major
advances in the systematics discipline and give
examples of the recent research on cryptic species.
We also discuss how recent development of systema-
tics enables it to be more informative for targeted
vector control strategies.

UNDERSTANDING SPECIES DIFFERENCES

Recent whole-genome scans of hundreds of thou-
sands of genetic markers (Emelianov et al. 2004;
Scotti-Saintagne et al. 2004; Nosil et al. 2007) have
led to a better insight into how the genomes of two
closely related species differ. The picture is emerging
of a ‘mosaic genome’, with gradual accumulation of
reproductive isolation across limited genomic regions
(della Torre et al. 2002; Coyne and Orr, 2004; Wu
and Ting, 2004; Via, 2009). If these cases represent
common patterns of genome-wide differences, it
seems possible that reproductive isolation can occur
through incompatibilities in a small number of genes,
while gene flow (Table 1) may still occur along other
parts of the genome. Complex gene flow boundaries
have already been found among the An. gambiae
chromosomal forms (della Torre et al. 1997; Turner
et al. 2005; Slotman et al. 2006; Lawniczak et al.
2010; Neafsey et al. 2010). For vector control, this
may mean that there is a potential for transgenic
elements or biocide resistance to spread across species
boundaries (Djogbenou et al. 2008), so future
monitoring programmes will perhaps need to extend
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monitoring of vectors across species boundaries in
species complexes.

TOWARDS A SYNTHESIS OF SYSTEMATICS AND

EVOLUTIONARY HISTORY

Genomic research has advanced our understanding
of how species are formed, but it has also highlighted
strong discrepancies between what we understand
a species to be, and how species have been described
and delimited – a rift that current systematics is
trying to suture. A formal species description
requires that the new species is given a valid name
following the International Code of Zoological
Nomenclature (ICZN), and a holotype specimen is
designated (ICZN, 1999). Information must also be
included that distinguishes a new species from related
species, but the Code imposes no limit on the quality
or nature of the information (morphological

characters, DNA sequences, chromosome banding
patterns, or a combination of different types of
information) (ICZN, 1999). The quality of evidence
presented in vector species designations therefore
varies widely and has evolved with technological
advancement; early 20th century species delimitation
was conducted through a brief comparison of key
morphological differences to similar species (Wilson,
2004) (e.g. Theobald, 1901–1910; Dönitz, 1903). For
species descriptions of later date, the delimitation
may also include a wider geographical sampling,
ecological information and chromosome, allozyme or
molecular evidence (e.g. White, 1985; Baimai et al.
1987; Wilkerson et al. 2004; Linton et al. 2005).
Regardless of the evidence, a species description
remains a hypothesis, which may or may not be
correct.

The problem of species delimitation using
pattern description

Many of these attempts at species delimitation are, as
in Linnaean times, implicitly essentialist; regarding
species as fixed entities, preserved through time and
space, and they may neglect biologically relevant
within-species heterogeneity and gene flow across
species boundaries. Pattern-based species descrip-
tions are simple comparisons of similarities and
differences in morphology or DNA markers, rather
than on in-depth study of evolutionary history. Some
possible artefacts can be avoided by integrating
results from several sources of data to reach an overall
conclusion, a so-called ‘total evidence approach’ or
‘integrative taxonomy’ (Puillandre et al. 2009; Roy
et al. 2009). However, the problem remains that
many such studies do not state a priori criteria for
identifying species boundaries, so they interpret
each clade as a separate species, irrespective of the
biogeographical history of the clade (Sites and
Crandall, 1997; Wiens, 2007). This has the effect
that the hypothesis of ‘new lineage equals new
species’ is rarely rejected, even when it is unclear if
the lineages are real or a result of short-term allopatric
fragmentation or incomplete geographical sampling
(Zarowiecki et al. 2011). This may lead to taxonomic
instability, which makes it more difficult to use the
designated species in other studies (Godfray, 2002;
Wiens, 2007), including those for vector control
purposes.

Enhanced species delimitation using
a process-oriented approach

Abetter fit between species definition and description
could perhaps be achieved by conducting mating
experiments, which investigates postzygotic repro-
ductive isolation. Unfortunately, mating experi-
ments are not feasible for many vector taxa, and do

Table 1. Definitions of terms used for the
speciation process

Term Definition

Speciation The process whereby one species
evolves into one or several new species.
During a speciation process the taxon
may accumulate morphological,
behavioural and genetic differences
that eventually lead to complete
post-zygotic reproductive isolation.

Pre-zygotic
reproductive
isolation

Reproductive isolation which occurs
before the formation of a zygote, for
instance because two species do not
physically meet, differences in
reproductive timing or behaviour, or
failure to recognise each other asmates.

Post-zygotic
reproductive
isolation

Reproductive isolation that occurs after
the formation of a zygote, usually due
to genetic or developmental
incompatibilities. It is usually
apparent when the species fails to
produce reproductive offspring even
during forced-mating experiments.

Gene flow A measure of the rate by which alleles
historically have been transferred
between two populations or species. If
reproductive isolation is complete, the
gene flow is expected to be zero. A
long-term cessation of gene flow
appears to be essential for a speciation
process to be complete.

Evolutionary
history

Reconstruction of historical species
formation, phylogenetic relationships
and biogeographical history of a taxon.

Pattern-based
species
delimitation

Species delineation based on
phenotypical or genetic differences.

Process-
orientated
species
delimitation

Species delineation that takes the
evolutionary and biogeographical
history of species into account, and
recognizes that speciation is not an
instant event, but a sometimes
reversible historical process.
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not consider geographical, pre-zygotic or ecological
barriers to reproduction (Table 1). A promising
alternative to create more coherence between species
and species delimitation is to use a process-oriented
approach, which evaluates current and historical gene
flow (Table 1). By thoroughly reconstructing the
entire evolutionary history of a species; determining
historical gene flow, population structure and bio-
geography, systematics research provides a much
more comprehensive understanding of the species,
and more information than just vector identification,
some of whichmay be relevant for vector control. For
this purpose, DNA sequence markers have an
advantage over cross-mating experiments, because
they can be used to detect long-term gene flow and
biologically relevant sub-populations in the vector
species, not only current post-zygotic mating barriers
between individual populations. This might be not
only of theoretical value, but also ubiquitously
useful, as seen over time and space, one could argue
that all species in fact are ‘in speciation’, i.e. they may
contain several independently evolving lineages,
which may become completely reproductively iso-
lated sometime in the future – or indeed may not be
maintained when the ecology, geography or climate
changes (Lamont et al. 2003; Seehausen; 2006), as
long as complete post-zygotic reproductive isolation
has not occurred (Nosil et al. 2009).

IMPROVED PRACTICAL METHODS FOR

SPECIES DELIMITATION

Species delineation has not only moved forward
theoretically, but technology and statistics have
developed as well. Newly introduced methods for
species delimitation are often based on statistical
testing of hypotheses, and an assessment of historical
or current gene flow (Pons et al. 2006; Stockman et al.
2006; Stockman and Bond, 2007; Cummings et al.
2008). They have evolved along two different lines:
the rapid large-scale methods that aim at charting
mostly unknown territory (Monaghan et al. 2005;
Pons et al. 2006) and the more specific methods that
deal in depth with a small number of taxa
(Templeton, 1998, 2001; Posada et al. 2000). These
rapid methods are often based on information from a
small number of genetic markers and are not expected
to give completely correct species delimitation in
every case. They provide instead statistical species
delimitation, by trying to recover monophyletic
clades in phylogenetic trees (Pons et al. 2006;
Cummings et al. 2008), similarity above a certain
threshold value (Hebert et al. 2004) or statistical
clustering (Schloss and Handelsman, 2005, 2006).
Although some statistical methods have been criti-
cised for oversimplifying species delimitation
(DeSalle et al. 2005; Ebach and Holdrege, 2005),
such methods have proved useful when applied to
real problems, especially in combination with

morphology and biogeography (DeSalle et al. 2005;
Vogler andMonaghan, 2007). They can, for instance,
rapidly reveal if there is a discrepancy between
species delimitation resulting from different data
(e.g. DNA, morphology, polytene chromosomes),
and indicate clades of apparent taxonomic inflation or
cryptic diversity. One caveat is that they are mostly
pattern based rather than process orientated, so they
can only be seen as a first step towards a more
complete understanding of the evolutionary history
of a species (Vogler and Monaghan, 2007).

Biogeographical methods for species delimitation

In studies of vector systematics and species delimita-
tion, a much more detailed understanding is often
needed than can be provided by rapid methods.
These methods nevertheless need to be logical,
robust and amenable to scientific validation, e.g.
through statistical testing. Several such methods
are available, and usually depend on one or more
properties one would expect species to acquire during
a speciation process, such as monophyletic lineages
(Baum and Shaw, 1995), significantly higher genetic
divergence compared with intraspecific polymorph-
ism (Highton, 1990; Good and Wake, 1992), lack of
gene flow (Porter, 1990), lack of shared polymorph-
ism (Sneath and Sokal, 1962; Davis andNixon, 1992)
and/or heterozygote deficiency (Doyle, 1995). Some
tests combine two or more of these categories:
morphological differentiation and genetic mono-
phyly (Wiens and Penkrot, 2002), monophyly and
ecological differentiation (Stockman and Bond, 2007)
or monophyly, gene flow and ecological differen-
tiation (Templeton, 1998; Posada et al. 2000;
Templeton, 2001). These fine-scale methods are
primarily developed from classic population genetics
approaches, but make use of recently introduced
biogeographical methods for estimation of popu-
lation expansion, time of divergence (Drummond
and Rambaut, 2007), levels of differentiation
(Pritchard et al. 2000, 2002; Falush et al. 2003) and
population structure (Dupanloup et al. 2002). The
software LAMARC simultaneously estimates gene
flow and population growth (Kuhner et al. 2005), and
the ‘isolation-with-migration’ model (IM) simul-
taneously estimates gene flow and divergence time
between two populations or species, using multi-
locus data (Wakeley andHey, 1997; Hey andNielsen,
2004). As thesemethods needmulti-locus data to give
accurate estimates (Hey andNielsen, 2004), they may
be costly and technically challenging for non-model
organisms (Knowles, 2004), but there is a growing
number of such studies available for vector species
(Loaiza et al. 2010; Morgan et al. 2010; Zarowiecki
et al. 2011). These studies have an advantage
over previous systematics research because they can
give information about the evolutionary process,
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e.g. estimates of times of divergence, species origin,
population structure, selection on particular genes,
population growth and gene flow heterogeneity
across genomes – all of which may be important for
understanding how the vectors evolved or how
insecticide resistance can spread between incipient
vector species.

WHY VECTOR EVOLUTIONARY HISTORY MATTERS

FOR PARASITE CONTROL

Many otherwise well-studied parasite vectors have,
through recent genetic studies, been revealed as
cryptic species complexes (Collins and Paskewitz,
1996; Manguin et al. 2008). The species in a complex
are morphologically indistinguishable under field
conditions, but they are reproductively isolated
(Table 1) and may differ significantly in ecology or
behaviour. One of the most intensively researched
vector species, the African malaria mosquito
Anopheles gambiae, belongs to a well-known cryptic
species complex, where some species differ widely in
feeding preferences and their importance as malaria
vectors (Gillies and Coetzee, 1987), but still new
genetic forms are being discovered (Riehle et al.
2011). There are also, perhaps less well known,
examples of where better species identification has
been achieved through biogeographical studies:
Anopheles subpictus is widely distributed across
southern and eastern Asia, and is considered a
major vector of malaria (Abhayawardana et al.
1996). In India, there are at least two species within
this nominal taxon that differ in many traits,
including vectorial capacity (Suguna et al. 1994;
Sahu, 1998), but a recent study revealed several
additional species in Southeast Asia, some of which
separated several million years ago (Zarowiecki,
2009). The number of species that are actually
malaria vectors is still unknown, but as several of
the species in the complex are sympatric, it is certain
that for a large number of previous studies on
vectorial capacity, biting behaviour and insecticide
resistance, it is unclear whether one or several species
were studied. Rapid molecular identification
methods for the An. subpictus complex are urgently
needed to identify the vectors, so that their bionomics
can be investigated and vector control methods
properly focused. This is important, as mainland
Southeast Asia has a relatively high incidence of
P. falciparum malaria, confirmed parasite resistance
to malaria drugs (Van Bortel et al. 2008), and
restricted resources for vector control.

The An. dirus complex includes seven species
(Harbach, 2004; Sallum et al. 2005). Of these,
An. baimaii, An. dirus and An. scanloni are all major
vectors of malaria in Southeast Asian tropical forests
(Sallum et al. 2005). These three species are largely
allopatric, but where they coexist there is a deficiency
of heterozygotes in both polytene chromosomes and

allozymes (Baimai et al. 1987; Green et al. 1992).
Post-mating reproductive barriers have been ident-
ified for all species, but some fertile offspring can be
found between An. dirus and An. scanloni (Baimai
et al. 1987). There are discrepancies between the
phylogenies of these species constructed from nuclear
and mitochondrial markers, and it is believed that
mitochondrial introgression betweenAn. baimaii and
An. dirus could explain these observations (Sallum
et al. 2007; O’Loughlin et al. 2008; Morgan et al.
2010). As a consequence, there is a concern that
genes, such as those that confer insecticide resistance,
could disperse across species boundaries (Morgan
et al. 2010).

The An. albitarsis complex is broadly distributed
in the Central and South America. Six species
are currently recognised (Motoki et al. 2009), only
three of which have been demonstrated to be vectors
of malaria: An. deaneorum, An. marajoara and
An. janconnae (Povoa et al. 2006). Post-mating
barriers have been investigated only between An.
deaneorum and the non-vectors An. oryzalimnetes
(Klein et al. 1991) and An. albitarsis (Lima et al.
2004). As several members of the complex are
sympatric (Brochero et al. 2007), behavioural, eco-
logical and malaria transmission studies have been
confounded by identification issues, but due to
improved systematic techniques five species can
now be reliably separated using PCR-RFLP of
ITS2 (Li andWilkerson, 2005; Brochero et al. 2007).

These examples reveal a range of genetic and
behavioural diversity within species complexes. The
basic systematics provides species-diagnostic tools,
but also insights into the evolution of traits that are
important for mosquito vectorial capacity and vector
control, and allows for further research into the
biology of vector species (Powell et al. 1999;Manguin
et al. 2008).

CONCLUSIONS AND FURTHER DIRECTIONS

Some parts of more general vector control pro-
grammes (such as utilizing non-selective insecticidal
spraying) can lead to biocide resistance and have
adverse side effects on human health and ecosystems.
This review has illustrated how understanding the
evolutionary history of vector species is important for
correct identification of vectors –which in turn is
essential for developing efficient vector control
programmes targeted at specific vectors. We have
highlighted the difference between species descrip-
tions, species delimitation and the current under-
standing of how species are formed, and suggest
that correct species identification and delimitation
should be underpinned by information on the
evolutionary process of the vector species. For
instance, systematics studies can provide information
about genetic heterogeneity within the vector
(Ramsey et al. 1994; Habtewold et al. 2008), allowing
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vector control studies to incorporate vector genetic
diversity. Detailed systematics data on gene flow of
the vector are also crucial for transgenic vector
control projects (Michalakis and Renaud, 2009).
There are still significant challenges ahead for
systematics, such as – in a standardised way – being
able to incorporate evolutionary history in species
descriptions, and allowing for differences in gene flow
across different parts of the genomes of hybridising
species. Nevertheless, it is clear that recent under-
standing of speciation and species delimitation
renders systematics research increasingly useful for
vector control studies.
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